

作者

Rongjie Fu 傅荣杰、Yun Zou 邹云 安捷伦科技公司 英伦路 412 号 上海市浦东新区,200131 中国

摘要

多环芳烃 (PAH) 作为烟草、焦油、燃料等不完全燃烧的产物, 是环境中常见的致癌物质。因此有许多法规都用于分析例如空 气、水、土壤和食品中的这些化合物。由于水中 PAH 含量极 低,需要一种高灵敏度的方法。本文介绍了一套完整的用于分 析水中 PAH 的高效液相色谱 (HPLC) 方法,并使用最近开发 的 ZORBAX Eclipse PAH 色谱柱和 AccuBond ODS C18 固相 萃取 (SPE) 柱来萃取水样。优化了 C18 键合相的 Eclipse PAH 具有极好的重现性,可以作为常规分析方法的理想的色谱柱。

引言

多环芳烃 (PAH) 在环境中普遍存在。自然产生和人为 产生的 PAH 有类似的成因。最新研究证实了很多 PAH 会致癌、具有诱变性以及导致畸形。因此,PAH 成为所有环境组织都密切关注的化合物,为保护人类 的健康,其在水中的含量是受到严格限制的 [1]。

"多环芳烃 (polycyclic aromatic hydrocarbons)"这 个术语也用于表示这些化合物。现在,其缩写形式 PAH 已广泛用于指代此类化合物。需要控制的 PAH 是指被美国国家环保局 (EPA) 指定为需要进行监管 的"主要污染物"— 16 种 PAH,美国国家环保局要 求对污水 (610[2])、饮用水 (550.1[3]) 和固体废弃物 (8310[4]) 中的这 16 种化合物不仅仅是定性,而是进 行定量分析。

而美国国家职业安全健康研究所 (NIOSH) 发布的 Method 5506[5] 中则包括 17 种 PAH。表 1 列出了 这 17 种化合物和它们的一些性质。

表 1[5]. NIOSH Method 5506 PAH 分子式和物理性质

化合物(按分子量排列)		分子式	分子量	熔点 (°C)	沸点 (°C)	水中溶解度 mg ⁄ L (25 °C)
1	萘	$C_{10}H_8$	128.17	80.2	218	30
2	苊烯	$C_{12}H_8$	152.20	92.5	280	3.9
3	苊	$C_{12}H_{10}$	154.21	93.4	279	3.9
4	芴	$C_{13}H_{10}$	166.22	115	295	2
5	茵	$C_{14}H_{10}$	178.23	215	340	0.07
6	菲	$C_{14}H_{10}$	178.23	99.2	340	1.2
7	荧蒽	$C_{16}H_{10}$	202.26	108	384	0.26
8	芘	$C_{16}H_{10}$	202.26	151	404	0.13
9	苯并[a]蒽	$C_{18}H_{12}$	228.29	167	435	0.01
10	崫	$C_{18}H_{12}$	228.29	258	448	0.002
11	苯并[b]荧蒽	$C_{20}H_{12}$	252.32	168	-	0.014
12	苯并[k]荧蒽	$C_{20}H_{12}$	252.32	217	480	0.008
13	苯并[a]芘	$C_{20}H_{12}$	252.32	177	495	0.004
14	苯并[e]芘	$C_{20}H_{12}$	252.32	178	311	-
15	苯并[g,h,i]苝	$C_{22}H_{12}$	276.34	278	-	-
16	茚并[1,2,3-cd]芘	$C_{22}H_{12}$	276.34	164	-	0.0005
17	二苯并[a,h]蔥	$C_{22}H_{14}$	278.35	270	524	0.00026

HPLC 条件

色谱柱:

"_" __表示无。

实验

仪器

Agilent 1200 SL 型高分离度快速液相色谱系统, 该系统包括以下组件:

4.6 mm x 150 mm, 3.5 μm (安捷伦部件号 959963-918) A水; B乙腈 流动相: 梯度时间表: 时间 (min) 0.0 50 2.0 50 SL 型二元泵 G1312B 22.0 100 微量真空脱气机 G1379B 流速: 1.5 mL/min 高性能多孔板自动进样器 (WPS), 配有 G1367C 二极管阵列检测器: 54 x 2 mL 样品盘 信号 A: 254, 4 nm; Ref 关闭 SI 刑柱泪箔(TCC) G1316B

G1316B	SL型柱温箱(TCC)	荧光检测器:					
G1315C	SL型二极管阵列检测器 (DAD), 配有标	示 时间表:					
	准流通池						
G1321A	荧光检测器 (FLD)						
连接仪器的所有管线内径为0.17 mm。							

其他仪器(例如 1100 二元系统, 1100 和 1200 四元 泵系统)也可运行此方法,但在此不作评价。使用其 他仪器时,可能需要对梯度进行细微调整。

%B(乙腈) 停止时间 28 min, 后运行 5 min PW 0.1 min; slit 4 nM; Standard Flow Cell

ZORBAX Eclipse PAH,

PMT=12		
时间 (min)	Ex(nm)	Em(nm)
0	220	330
7	210	330
9.6	250	363
10.7	250	405
12	250	460
13	270	400
20.2	270	415
24.3	250	490

EPA 610的 PAH 混合标样和单个苯并[e]芘标样从 SUPELCO (Bellefonte, PA, USA) 获得。将 0.9 mL

表 2. 储备液中 PAH 标样的浓度

化合	∖物(按分子量排列)	浓度 (ug/mL)	
1	—————————————————————————————————————	900	
2	<i>二</i> 苊烯	1800	
3	苊	900	
4	芴	180.1	
5	茵	90.2	
6	菲	90.1	
7	荧蒽	180	
8	芘	89.9	
9	苯并[a]蒽	89.9	
10	崫	90.2	
11	苯并[b]荧蒽	180	
12	苯并[k]荧蒽	89.9	
13	苯并[a]芘	90.1	
14	苯并[e]芘	125	
15	苯并[g,h,i]苝	179.9	
16	茚并[1,2,3-cd]芘	90.1	
17	二苯并[a,h]蒽	179.9	

EPA 610 混合物与 0.1 mL 1.25 mg/mL 苯并[e]芘混 合,作为储备液。表 2 给出了 PAH 储备液的浓度组 成。用乙腈稀释储备液制备用于校正曲线的标样。 校正曲线采用了五个浓度。 要分析水中的痕量 PAH,使用 AccuBond ODS C18 SPE 小柱(安捷伦部件号 188-1356)萃取 1 L 水。 萃取柱 (0.5 g) 依次用四份 10 mL 二氯甲烷 (DCM)、 甲醇和两份 10 mL 水 (HPLC 级)进行预处理。

接着使用自动固相萃取器将 1 L 水样以 2.5 mL/min 的流速通过 SPE 小柱。然后用 10 mL HPLC 水冲洗 萃取柱。用氮气吹扫 SPE 柱约 10 min 将其吹干。然 后,用两份 5 mL DCM 将 PAH 样品从柱上洗脱,合 并洗脱液。用氮气将洗脱液吹干至体积为 1 mL,然 后加入 3.0 mL 乙腈,再将其浓缩至体积为 1.0 mL [3]。

结果与讨论

分离与检测

在此应用中,17种 PAH 均可在 ZORBAX Eclipse PAH 色谱柱上得到基线分离。图 1 和图 2 显示了分 別使用二极管阵列检测器和荧光检测器在该色谱柱上 获得的17种 PAH 的色谱图。混合物包含五组异构体 (第一组5和6;第二组7和8;第三组9和10; 第四组11、12、13和14;第五组16和17)。其中 有些无法在其他反相色谱柱或PAH 柱上得到基线分 离。Eclipse PAH 色谱柱是一种独特键合相的色谱柱, 专门为分离这些异构体而设计。最接近的峰(例如峰 3和4、峰11和12)的分离度均大于2.0。

图 1. Eclipse PAH 上分离的 17 种 PAH, 4.6 mm x 150 mm, 3.5 µm (部件号 959963-918), 二极管阵列检测器 254 nm

图 2. Eclipse PAH 上分离的 17 种 PAH, 4.6 mm x 150 mm, 3.5 µm (部件号 959963-918), 荧光检测器

在该方法中,我们使用了二极管阵列检测器和荧光检测器。荧光检测灵敏度更高,建议用于 PAH 的痕量分析。所有 PAH 都有其自己最佳的激发和发射波长。 为获得最高的灵敏度,使用了荧光检测程序,可以获得最低为皮克级的检测限 (LOD)。与使用紫外吸收相比,分析物信噪比大约高了 100 倍,因此,LOD 大约是紫外检测的 1/100。表 3 中显示了在信噪比为 3 的条件下,计算的 FLD 和 DAD 的 LOD 数据。

表 3. 17 种 PAH 分别在 FLD 和 DAD 上的 LOD 理论值(信噪比 = 3)

化合物 (按洗脱顺序)		LOD (FLD) (pg)	LOD (DAD) (pg)
1	萘	1.93	196.6
2	苊烯	-	521.1
3	苊	2.64	936.3
4	芴	2.13	774.5
5	菲	0.54	31.5
6	茵	0.14	16.0
7	荧蒽	0.62	150.0
8	芘	0.24	189.8
9	苯并[a]蒽	0.69	56.5
10		0.80	41.9
11	苯并[e]芘	2.18	133.2
12	苯并[b]荧蒽	2.35	55.8
13	苯并[k]荧蒽	0.17	72.6
14	苯并[a]芘	0.38	117.0
15	二苯并[a,h]蒽	2.11	202.1
16	苯并[g,h,i]苝	1.89	206.5
17	茚并[1,2,3-cd]芘	1.69	87.0

对于高度污染的样品,二极管阵列检测除可以准确定 量外,还可提供其他分析数据,例如峰一致性和峰纯 度确认。另外,苊烯不发射荧光,所以此类化合物也 需要采用紫外检测。在许多法规中,紫外线 254 nm 用于所有 PAH 化合物的检测,但对于有些 PAH 化合 物来说,254 nm 不一定是理想的检测波长。在一些 论文中,采用 DAD 波长转换程序来获得最佳的信噪 响应 [6]。

重现性和线性

稳定的保留时间 (RT) 对于从复杂的环境基质中正确 识别分析物非常重要。当使用时间可编程荧光检测器 时,稳定的保留时间对于在分析过程中设置波长转换 也非常重要。峰面积的精度对于获得可靠的定量数据 同样十分重要。

表 4 列出了典型的 RT 精度(优于 0.1%),这是通过 使用 Eclipse PAH 色谱柱进行了 10 次 PAH 分析获 得的。通过 FLD 和 DAD 获得的峰面积精度低于 2% 相对标准偏差(RSD)。

Eclipse PAH 色谱柱的性能以及 1200 SL 型仪器的可 靠性提供了这些高质量的结果。新的 Eclipse PAH 色 谱柱与其他 Eclipse Plus 色谱柱一样采用的是一种新 的高纯度硅胶,因此对于所有样品类型(包括 PAH 样品),均可获得最佳峰形和最高的柱效及优异的重 现性。

表 4. Eclipse PAH, 4.6 mm x 150 mm, 3.5 μm 色谱柱上的峰面积重现性和保留时间重现性

化合物 (按洗脱顺序)		DAD 面积 RSD (%) (N = 10)	FLD 面积 RSD (%) (N = 10)	DAD RT RSD (%) (N = 10)	FLD RT RSD (%) (N = 10)
1	萘	0.39	0.70	0.04	0.07
2	苊烯	0.44	-	0.06	_
3	苊	0.56	0.84	0.05	0.05
4	芴	0.61	0.77	0.05	0.05
5	菲	0.47	0.45	0.04	0.11
6	菌	0.57	0.27	0.04	0.04
7	荧蒽	0.67	0.45	0.03	0.04
8	芘	1.44	0.27	0.03	0.02
9	苯并[a]蒽	0.48	0.36	0.09	0.02
10		0.41	0.30	0.02	0.02
11	苯并[e]芘	1.15	0.29	0.02	0.02
12	苯并[b]荧蒽	0.42	0.41	0.01	0.02
13	苯并[k]荧蒽	0.74	0.47	0.01	0.02
14	苯并[a]芘	1.41	0.98	0.009	0.02
15	二苯并[a,h]蒽	1.02	0.39	0.007	0.01
16	苯并[g,h,i]苝	1.12	0.89	0.01	0.01
17	茚并[1,2,3-cd]芘	0.75	0.39	0.008	0.01

请注意,图 3 显示了苯并[a]芘的线性图(范围从 0.011 ng 到 0.18 ng,相关系数为 0.99990)。而表 5 中列出的分别在 DAD 和 FLD 上的线性相关系数,每 个 PAH 的相关系数都很好,非常接近 1.00。为饮用 水中痕量的 PAH 的定量给出了良好的线性和范围。

表 5. Eclipse PAH 色谱柱分别在 DAD 和 FLD 上的线性相关系数

化合物 (按洗脱顺序)		DAD 线性相关系数 (r2)	线性范围 (ng)	FLD 线性相关系数 (r2)	线性范围 (ng)
1	萘	0.9999	1.76 - 56.25	0.9999	0.11-1.76
2	苊烯	0.9999	3.52 - 112.5	_	_
3	苊	0.9999	1.76 - 56.25	0.9998	0.22 - 3.52
4	芴	0.9999	3.52 - 112.5	0.9993	0.11 – 1.76
5	菲	0.9999	0.18-5.63	0.9998	0.22 - 3.52
6	茵	0.9999	0.18-5.64	0.9998	0.011 - 0.176
7	荧蒽	0.9999	0.35 – 11.25	0.9999	0.011 - 0.176
8	芘	0.9990	0.35 - 11.25	0.9999	0.022 - 0.352
9	苯并[a]蒽	0.9998	0.18-5.62	0.9999	0.011 – 0.176
10	崫	0.9999	0.18-5.64	0.9999	0.011 - 0.176
11	苯并[e]芘	0.9993	0.49-15.62	0.9999	0.011 – 0.176
12	苯并[b]荧蒽	0.9999	0.35 – 11.25	0.9999	0.015 - 0.244
13	苯并[k]荧蒽	0.9994	0.35 – 11.25	0.9999	0.022 - 0.352
14	苯并[a]芘	0.9994	1.41 - 45.0	0.9999	0.011 - 0.176
15	二苯并[a,h]蒽	0.9993	0.70 - 22.5	0.9999	0.022 - 0.352
16	苯并[g,h,i]苝	0.9990	0.70 - 22.5	0.9996	0.022 - 0.352
17	茚并[1,2,3-cd]芘	0.9994	0.35 – 11.25	0.9996	0.011 – 0.176

图 3. 通过 FLD 程序获得的苯并[a]芘的线性图

回收率

表 6 显示了基于 1L HPLC 水样中添加 10 μl 标准储 备液的回收率结果。根据"样品前处理"中描述的步 骤制备回收样品。考虑到 PAH 在水中溶解度较低, 尤其是后洗脱化合物,因此通常在添加了标样的水中 使用有机溶剂改性剂(例如甲醇、异丙醇、四氢呋喃 或它们的混合物)。本方法中使用了 20% 甲醇用作有 机溶剂改性剂。化合物 2、3、4、5、6 和 7 的回收 率在 85% 以上,但化合物 1、10、11、12、13、15、 16 和 17 则没有那么高,而是在 35% 到 49% 之间。 化合物萘具有挥发性,在使用氮气吹扫进行浓缩时导 致回收率较低,由于后洗脱化合物的溶解度低,即使 在水中添加了20%甲醇,它们的回收率依然比较低。

为提高挥发性萘的回收率,可以使用一种管式加热器 浓缩技术进行浓缩,并将 ODS-C18 的 DCM 洗脱液 转换为乙腈 [1]。

实际样品

图 4 显示了多种水样(包括试剂水、饮用水、自来水 和河水)的色谱图。每种水样添加了 40 μL 1/640 储 备液,其中苯并[a]芘浓度为 0.225 ppb。所有添加的 标样都能被检测到并且得到良好地分离。在先前的研 究中,我们使用的梯度时间较短,为 18 min,所有 标样也都进行了基线分离,但实际样品中在 13 和 14 之间存在干扰峰。为分离这个干扰峰,梯度时间增加 到了 22 min。在研究中,此条件下,没有在 HPLC 纯水中找到目标 PAH,因此将这种水认为是空白水。 最上面的色谱图是添加了标样的试剂水(HPLC 纯 水)。我们在一些自来水样中发现了痕量的萘。使用 FLD,在一些河水样品中检测到少量的化合物萘、 苊、芴、菲、蔥、荧蔥、芘、苯并[a]蔥。

表 6. 17 种 PAH 的回收率数据 (n = 3)

化合物 (按洗脱顺序)		FLD 回收率 (%)	RSD (%)	DAD 回收率 (%)	RSD (%)
1	萘	42.6	1.48	44.0	5.9
2	苊烯	-	_	97.1	5.3
3	苊	97.2	4.38	95.7	4.4
4	芴	100.6	5.5	100.4	6.1
5	菲	95.4	5.11	101.6	5.6
6	茵	88.3	3.73	90.9	4.7
7	荧蒽	94.1	3.60	92.4	4.5
8	芘	88.4	4.30	83.5	2.4
9	苯并[a]蒽	61.6	1.74	60.3	5.8
10		48.0	2.99	48.9	6.1
11	苯并[e]芘	40.1	4.97	40.4	12.8
12	苯并[b]荧蒽	48.7	2.06	48.8	3.4
13	苯并[k]荧蒽	42.0	3.81	45.8	1.7
14	苯并[a]芘	58.8	3.59	57.6	10.0
15	二苯并[a,h]蒽	39.1	6.36	35.2	11.1
16	苯并[g,h,i]苝	39.2	2.34	45.6	4.8
17	茚并[1,2,3-cd]芘	46.7	1.57	39.8	6.8

结论

使用新的 ZORBAX Eclipse PAH 色谱柱,所有 17 种 PAH 均得到了基线分离,并且最靠近的两个分析物 的分离度也大于 2.0。在河水和饮用水样品中,所有 添加的 PAH 可以与干扰物分离。线性极佳;平均峰 面积重现性好,RSD% 低于 1.5%,平均保留时间重现 性 RSD% 低于 0.1%。使用 AccuBond ODS C18 得到 的回收率与法规规定的基本一致。通过进一步优化样 品前处理过程,可能会获得更好的结果,但本文中未 做研究。使用 FLD 程序检测可获得低皮克级 LOD。 对于除了苊烯 (不发射荧光)以外所有 PAH,本应 用中的 FLD 设置给出了最佳信噪比。

Eclipse PAH 色谱柱的性能极佳,对于 PAH 的分析 柱效高且具有独特的选择性,因此对于实际水样中痕 量 PAH 分析可以获得高灵敏度。

参考文献

- 1. Harry Prest, "Solid-Phase Extraction and Retention-Time Locked GC/MS Analysis of Selected Polycyclic Aromatic Hydrocarbons (PAHs)" Agilent Technologies publication, 5988-7150EN (2002).
- 2. United States Environmental Protection Agency, "Determination of Polycyclic Aromatic Hydrocarbons in Municipal and Industrial Wastewater," *Method 610*, **1982**, EPA Environmental Monitoring Systems Laboratory, Office of Research and Development, Cincinnati, Ohio 45268.
- 3. United States Environmental Protection Agency, "Determination of Polycyclic Aromatic Hydrocarbons in Drinking Water by Liquid-Solid Extration and HPLC with Coupled Ultraviolet and Fluorescence Detection," *Method 550.1*, **1990**, EPA Environmental Monitoring Systems Laboratory, Office of Research and Development, Cincinnati, Ohio 45268.

- 4. United States Environmental Protection Agency, "Determination of Polycyclic Aromatic Hydrocarbons in Ground Water and Wastes," *Method 8310*, **1986**, EPA Environmental Monitoring Systems Laboratory, Office of Research and Development, Cincinnati, Ohio 45268.
- National Institute for Occupational Safety and Health Manual of Analytical Methods (NMAM), Fourth Edition, Polynuclear Aromatic Hydrocarbons by HPLC, *Method 5506*, Issue 3, 1998, Washington DC 20201.
- 6. Sun, Determination of 16 Polycyclic Aromatic Hydrocarbons by Liquid Chromatography with Solid Phase Extraction (II), *J. of University of Science and Technology of Suzhou*, 19(4): 43-48 (2006).

更多信息

要了解有关我们产品和服务的更多信息,请访问我们的网站 www.agilent.com/chem/cn。

安捷伦对本资料中出现的错误,以及由于提供或使用本资料所造成的相关损失不承担责任。

本资料中涉及的信息、说明和性能指标,如有变更,恕不另行通知。

© 安捷伦科技, 2008

中国印刷 2008 年 2 月 14 日 5989-7953CHCN

